

Low-rank Recovery Problems in Signal Processing

Justin Romberg, Georgia Tech ECE NMI, IISc, Bangalore, India February 21, 2015

Collaborators

Ali Ahmed

Sohail Bahmani

Ben Recht

Karim Sabra

Ning Tian

Recovering a matrix from limited observations

Suppose we are interested in recovering the values of a matrix $oldsymbol{X}$

$$\boldsymbol{X} = \begin{bmatrix} X_{1,1} & X_{1,2} & X_{1,3} & X_{1,4} & X_{1,5} \\ X_{2,1} & X_{2,2} & X_{2,3} & X_{2,4} & X_{2,5} \\ X_{3,1} & X_{3,2} & X_{3,3} & X_{3,4} & X_{3,5} \\ X_{4,1} & X_{4,2} & X_{4,3} & X_{4,4} & X_{4,5} \\ X_{5,1} & X_{5,2} & X_{5,3} & X_{5,4} & X_{5,5} \end{bmatrix}$$

We are given a series of different *linear combinations* of the entries

$$\boldsymbol{y} = \mathcal{A}(\boldsymbol{X})$$

Suppose we do not see all the entries in a matrix ...

$$\boldsymbol{X} = \begin{bmatrix} X_{1,1} & - & X_{1,3} & - & X_{1,5} \\ - & X_{2,2} & - & X_{2,4} & - \\ - & X_{3,2} & X_{3,3} & - & - \\ X_{4,1} & - & - & X_{4,4} & X_{4,5} \\ - & - & - & X_{5,4} & X_{5,5} \end{bmatrix}$$

... can we "fill in the blanks"?

Low rank structure

Agenda

- Many applications of low-rank recovery in machine learning: recommendation systems, covariance estimation, etc.
- This talk: how this theory relates to fundamental problems in signal processing

Topics include:

- sampling large ensembles of correlated signals
- blind deconvolution
- source separation
- super-resolution with unknown spreading function

Low rank recovery from linear measurements

ullet We have an underdetermined linear operator ${\cal A}$

$$\mathcal{A}: \mathbb{R}^{K \times N} \to \mathbb{R}^{M}, \quad M \ll KN, \quad \mathcal{A}(\mathbf{X}) = \{\langle \mathbf{X}, \mathbf{A}_{m} \rangle\}_{m=1}^{M}$$

and observe

$$\boldsymbol{y} = \mathcal{A}(\boldsymbol{X}_0) + \text{noise}$$

where $oldsymbol{X}_0$ has rank R

• One recovery technique: nuclear norm relaxation

$$\min_{oldsymbol{X}} ~ \|oldsymbol{X}\|_* ~$$
 subject to $~~\mathcal{A}(oldsymbol{X}) = oldsymbol{y}$

where $\|X\|_* =$ sum of the singular values of X

Recovering low rank matrices

Given y, we solve the (convex) optimization program

When \mathcal{A} is distance preserving, this is provably effective.

When can we recover a low rank matrix?

Two main approaches for establishing effectiveness:

 \bullet Uniform embeddings: Show ${\cal A}$ keeps rank-R matrices separated,

$$\|\mathcal{A}(\boldsymbol{X}_1-\boldsymbol{X}_2)\|_2^2~pprox~\|\boldsymbol{X}_1-\boldsymbol{X}_2\|_F^2$$
 for all rank- $R~\boldsymbol{X}_1, \boldsymbol{X}_2$

Very powerful, hard to establish Works for subgaussian projections, "fast JLT" projections

When can we recover a low rank matrix?

Two main approaches for establishing effectiveness:

 \bullet Uniform embeddings: Show ${\cal A}$ keeps rank-R matrices separated,

 $\|\mathcal{A}(\boldsymbol{X}_1-\boldsymbol{X}_2)\|_2^2~pprox~\|\boldsymbol{X}_1-\boldsymbol{X}_2\|_F^2$ for all rank- $R~\boldsymbol{X}_1, \boldsymbol{X}_2$

Very powerful, hard to establish Works for subgaussian projections, "fast JLT" projections

• Duality theory: show you can construct a dual certificate for

$$\min_{\boldsymbol{X}} \ \|\boldsymbol{X}\|_* \quad \text{subject to} \quad \mathcal{A}(\boldsymbol{X}) = \mathcal{A}(\boldsymbol{X}_0)$$

for a particular X_0 . Result holds for a particular X_0 , strong stability harder to establish Works for many A with *structured randomness*

Duality for low rank recovery

The matrix ${m X}_0$ is a solution to $\min_{{m X}} \|{m X}\|_* \quad \text{subject to} \quad y_m = \langle {m X}, {m A}_m \rangle, \ \ m=1,\ldots,M$ when

$$\mathcal{A}(\boldsymbol{X}_0) = \boldsymbol{y}, \hspace{1em} ext{and there is a } \boldsymbol{z} ext{ s.t. } \hspace{1em} \mathcal{A}^{\mathrm{T}}(\boldsymbol{z}) = \sum_{m=1}^M z_m \boldsymbol{A}_m \in \partial \| \boldsymbol{X}_0 \|_*$$

where with $oldsymbol{X}_0 = oldsymbol{U}_0 oldsymbol{\Sigma}_0 oldsymbol{V}_0^{\mathrm{T}}$, $\partial \|oldsymbol{X}_0\|_* = \{oldsymbol{U}_0 oldsymbol{V}_0^{\mathrm{T}} + oldsymbol{W}, \ \|oldsymbol{W}\| \leq 1\}$

Matrix Measurements

Matrix Recovery: random measurements

Take vectorize X, stack up vectorized A_m as rows of a matrix

Independent subgaussian entries in the A_m embeds rank-R matrices when

$$M \gtrsim R(K+N)$$

(Recht, Fazel, Parillo, Candes, Plan, ...)

Matrix Recovery: random measurements

Embedding established in a similar manner as yesterday:

• Concentration: For a fixed X,

$$P\left(\left|\|\mathcal{A}(\boldsymbol{X})\|_{2}^{2} - \|\boldsymbol{X}\|_{F}^{2}\right| > \delta\right) \leq C \cdot e^{-c\delta^{2}M}$$

• Covering: Rank-R matrices come from an infinite union of subspaces, standard covering bounds allow a net of size $\sim e^{R(K+N)}$ for same order δ

Matrix Recovery: structured randomness

Krahmer, Ward'10: If $M \times N$ Φ obeys RIP for S sparse, then

 $\mathbf{\Phi}' = \mathbf{\Phi} oldsymbol{D}, \quad oldsymbol{D}$ diagonal, random

obeys the concentration inequality

$$\mathrm{P}\left(\left|\|\boldsymbol{\Phi}'\boldsymbol{x}\|_2^2 - \|\boldsymbol{x}\|_2^2\right| > \delta\right) < C \cdot e^{-cS}$$

If $\mathbf{\Phi}$ is an "efficient" CS matrix, we have for all $oldsymbol{X}_1, oldsymbol{X}_2$ rank-R,

 $\|\mathcal{A}(\boldsymbol{X}_1)\|_2^2 \approx \|\boldsymbol{X}_1 - \boldsymbol{X}_2\|_F^2 \quad \text{when} \quad M \gtrsim R(K+N)\log^q(KN)$

Matrix Recovery: structured randomness

Krahmer, Ward'10: If $M \times N~{\bf \Phi}$ obeys RIP for S sparse, then

 $oldsymbol{\Phi}' = oldsymbol{\Phi} oldsymbol{D}, \quad oldsymbol{D}$ diagonal, random

obeys the concentration inequality

$$P\left(\left|\|{\bm{\Phi}}'{\bm{x}}\|_{2}^{2} - \|{\bm{x}}\|_{2}^{2}\right| > \delta\right) < C \cdot e^{-cS}$$

Example: Modulate each column, then convolve each with random pulse, then add

Matrix Recovery: structured randomness

Krahmer, Ward'10: If $M \times N~{\bf \Phi}$ obeys RIP for S sparse, then

 $\mathbf{\Phi}' = \mathbf{\Phi} oldsymbol{D}, \quad oldsymbol{D}$ diagonal, random

obeys the concentration inequality

$$P\left(\left|\|{\bm{\Phi}}'{\bm{x}}\|_{2}^{2} - \|{\bm{x}}\|_{2}^{2}\right| > \delta\right) < C \cdot e^{-cS}$$

Example: Modulate each column, then convolve each with random pulse, then add

Example: matrix completion

Suppose we do not see all the entries in a matrix ...

$$\boldsymbol{X} = \begin{bmatrix} X_{1,1} & - & X_{1,3} & - & X_{1,5} \\ - & X_{2,2} & - & X_{2,4} & - \\ - & X_{3,2} & X_{3,3} & - & - \\ X_{4,1} & - & - & X_{4,4} & X_{4,5} \\ - & - & - & X_{5,4} & X_{5,5} \end{bmatrix}$$

... we can fill them in from

$$M \gtrsim R(K+N) \cdot \log^2(KN)$$

randomly chosen samples if X is *diffuse*.

(Recht, Gross, Candes, Tao, Montenari, Oh, ...)

Rank 1 inner products

Measurements of the form

$$y_m = oldsymbol{
u}_m^{\mathrm{T}} oldsymbol{X} oldsymbol{\phi}_m = \langle oldsymbol{X}, oldsymbol{
u}_m oldsymbol{\phi}_m^{\mathrm{T}}
angle$$

inner products with rank 1 matrices

With $\nu = \phi_k$, and $X = uu^{\mathrm{T}}$ itself rank 1 and symmetric, this is the "phase retrieval" problem

$$y_m = oldsymbol{\phi}_m^{\mathrm{T}} oldsymbol{u} oldsymbol{u}^{\mathrm{T}} oldsymbol{\phi}_m = |\langle oldsymbol{u}, oldsymbol{\phi}_m
angle|^2$$

• Recovery for $M \gtrsim N$, based on weak embeddings for rank-1, ϕ random (Candes, Strohmer, Voroninski '12)

• ℓ_1/ℓ_2 embeddings for rank-R for $M\gtrsim RN$ (Chen, Chi, Goldsmith '13)

Rank 1 inner products

Measurements of the form

$$y_m = \boldsymbol{\nu}_m^{\mathrm{T}} \boldsymbol{X} \boldsymbol{\phi}_m = \langle \boldsymbol{X}, \boldsymbol{\nu}_m \boldsymbol{\phi}_m^{\mathrm{T}} \rangle$$

inner products with rank 1 matrices

With u, ϕ different and $X = rc^{\mathrm{T}}$ rank 1, this is equialent to "blind deconvolution"

$$y_m = \boldsymbol{\nu}_m^{\mathrm{T}} \boldsymbol{r} \boldsymbol{c}^{\mathrm{T}} \boldsymbol{\phi}_m = \langle \boldsymbol{r}, \boldsymbol{\nu}_m \rangle \cdot \langle \boldsymbol{c}, \boldsymbol{\phi}_m \rangle$$

- ϕ_m random, ν incoherent in Fourier domain, Recovery for rank-1 X for $M \gtrsim (N+K) \log^3(NK)$ (Ahmed, R, Recht '12) Recovery for rank-R X for $M \gtrsim R(N+K) \log^3(NK)$ (Ahmed, R '13)
- ν_m, ϕ_m both random, strong embedding (RIP) for $M \gtrsim R(N+K)\log(NK)$

(Ahmed, Krahmer, R '15)

Randomized linear algebra

Given an $N\times K$ matrix \boldsymbol{X} with rank R, we can recover the column space from

$$oldsymbol{X}oldsymbol{\phi}_1, \ oldsymbol{X}oldsymbol{\phi}_2, \dots, \ oldsymbol{X}oldsymbol{\phi}_p$$

for $p\approx R$, where the ϕ_i are random vectors

Factor $oldsymbol{Y}_1 = oldsymbol{Q}_c oldsymbol{R}_c$ to get an orthobasis for the column space

Randomized linear algebra

Given an $K \times N$ matrix X with rank R, multiplying by a $q \times N$ random projection U^T preserves the row space for $q \approx R$

Randomized linear algebra

With orthobases for the column space Q_c and the row space Q_r identified, we can recover mX from the two sets of measurements using a *least-squares* algorithm

$$\min_{\boldsymbol{A}} \|\boldsymbol{Y}_1 - \boldsymbol{Q}_c \boldsymbol{A} \boldsymbol{Q}_r^{\mathrm{T}} \boldsymbol{\Phi}_1 \|_F^2 + \|\boldsymbol{Y}_2 - \boldsymbol{\Phi}_2 \boldsymbol{Q}_c \boldsymbol{A} \boldsymbol{Q}_r^{\mathrm{T}} \|_F^2$$

Randomized Linear algebra and Rank 1

• Measurements $oldsymbol{Y}_1 = oldsymbol{X} oldsymbol{\Phi} 1, oldsymbol{Y}_2 = oldsymbol{\Phi}_2^{\mathrm{T}} oldsymbol{X}$ can be written as

$$y_m = \langle \boldsymbol{X}, \boldsymbol{e}_i \boldsymbol{\phi}_k^{\mathrm{T}}
angle, \quad \text{or} \quad \langle \boldsymbol{X}, \boldsymbol{\phi}_k \boldsymbol{e}_{i'}^{\mathrm{T}}
angle$$

where ϕ_k is random and e_i are standard basis vectors.

• Recovery us least-squares for

 $M \gtrsim R(K+N)$

measurements

Stability with noise added?

Sampling ensembles of correlated signals

Sensor arrays

Caltech multielectrode

IBM phased array

MIT nanophotonic array

UCSD phased

Neural probes

Up to 100s of channels sampled at \sim 100 kHz

10s of millions of samples/second

Near Future: 1 million channels, terabits per second

Array processing of narrowband signals

100 MHz bandwidth, carried at 5 GHz, linear array with 100 elements

Correlated signals

Nyquist acquisition:

sampling rate \approx (number of signals) \times (bandwith) = $M \cdot W$

Correlated signals

Can we exploit the *latent* correlation structure to reduce the sampling rate?

One non-uniform ADC per channel

- M individual nonuniform-ADCs with average rate θ
- Same as choosing $M\theta$ random samples from $M \times W$ matrix

One non-uniform ADC per channel

• Direct application of matrix completion results: we can recover "incoherent" ensembles when

sampling rate
$$= heta ~\gtrsim~ rac{R}{M} W \cdot \log^2(W)$$

 Incoherent ⇒ signal energy is spread out evenly across time and channels

Analog to digital converters

225 Msps, 2 GHz bandwidth

Many architectures for compressive sampling of spectrally sparse signals based on non-uniform sampling

Bresler, Feng, Candes, R, Tao, ...

Sampling using the random demodulator

• Instead of running each ADC at rate $\Omega \geq W,$ we can take

$$\Omega \gtrsim \frac{R}{M} W \cdot \log^3(W)$$

subject to (weaker) incoherence conditions

Correlated sampling: numerical results

Random demodulation

 Architectures for (compressive) sampling of spectrally sparse signals Tropp, Duarte, Laska, R, Baraniuk '08 Mishali, Eldar '09

• Hardware implementations with 10s of channels at 5 GHz
Multiplexing onto one channel

• We can always combine *M* channels into 1 by *multiplexing* in either time or frequency

Frequency multiplexer:

 $\bullet\,$ Replace M ADCs running at rate W with 1 ADC at rate MW

Coded multiplexing

Architecture that achieves

sampling rate \approx (independent signals) \times (bandwidth) $\gtrsim RW \cdot \log^{3/2} W$

Coded multiplexing: numerical results

red=Nyquist, blue=cmux

Blind deconvolution and source separation

Quadratic and bilinear equations

Second-order equations contain unknown terms multiplied by one another

$$\begin{aligned} v_1^2 + 3v_1v_2 - 6v_1v_3 + v_2^2 &= 7\\ u_1v_1 + 5u_1v_2 + 7u_2v_3 &= -12\\ u_3v_1 - 9u_2v_2 + 4u_3v_2 &= 2 \end{aligned} \qquad \text{both } u, v \text{ unknown} \end{aligned}$$

Their nonlinearity makes them trickier to solve, and the computational framework is nowhere nearly as strong as for linear equations

Quadratic and bilinear equations

Simple (but only recently appreciated) observation: Systems of bilinear equations, e. g.

> $u_1v_1 + 5u_1v_2 + 7u_2v_3 = -12$ $u_3v_1 - 9u_2v_2 + 4u_3v_2 = 2$

can be recast as linear system of equations on a matrix that has rank 1:

$$uv^{T} = \begin{bmatrix} u_{1}v_{1} & u_{1}v_{2} & u_{1}v_{3} & \cdots & u_{1}v_{N} \\ u_{2}v_{1} & u_{2}v_{2} & u_{2}v_{3} & \cdots & u_{2}v_{N} \\ u_{3}v_{1} & u_{3}v_{2} & u_{3}v_{3} & \cdots & u_{3}v_{N} \\ \vdots & \vdots & \ddots & \\ u_{K}v_{1} & u_{K}v_{2} & u_{K}v_{3} & \cdots & u_{K}v_{N} \end{bmatrix}$$

Quadratic and bilinear equations

Simple (but only recently appreciated) observation: Systems of bilinear equations, e. g.

 $u_1v_1 + 5u_1v_2 + 7u_2v_3 = -12$ $u_3v_1 - 9u_2v_2 + 4u_3v_2 = 2$

can be recast as linear system of equations on a matrix that has rank 1:

Compressive (low rank) recovery \Rightarrow

"Generic" quadratic/bilinear systems with cN equations and N unknowns can be solved using nuclear norm minimization

Blind deconvolution

image deblurring

multipath in wireless comm

(image from EngineeringsALL)

We observe

$$y[\ell] = \sum_{n} s[n] h[\ell - n]$$

and want to "untangle" s and h.

(Recent identifiability results by Choudhary, Mitra)

Phase retrieval

(image courtesy of M. Soltanolkotabi)

Observe the *magnitude* of the Fourier transform $|\hat{x}(\omega)|^2$ $\hat{x}(\omega)$ is complex, and its phase carries important information

(Recently analyzed by Candes, Li, Soltanolkotabi, Strohmer, and Voroninski)

Blind deconvolution as low rank recovery

Each sample of y = s * h is a bilinear combination of the unknowns,

$$y[\ell] = \sum_{n} s[n]h[\ell - n]$$

and is a *linear* combination of sh^{T} :

Blind deconvolution as low rank recovery

Given y = s * h, it is impossible to untangle s and h unless we make some *structural assumptions*

Structure: s and h live in known subspaces of \mathbb{R}^L ; we can write

$$s = Bu,$$
 $h = Cv,$ $B : L \times K,$ $C : L \times N$

where *B* and *C* are matrices whose columns form bases for these spaces We can now write blind deconvolution as a *linear inverse problem with a rank contraint*:

$$oldsymbol{y} = \mathcal{A}(oldsymbol{X}_0), \hspace{1em}$$
 where $oldsymbol{X}_0 = oldsymbol{u}oldsymbol{v}^{\mathrm{T}}$ has rank=1

The action of $\mathcal{A}(\cdot)$ can be broken down into three linear steps:

$$oldsymbol{X}_0 \ o \ oldsymbol{B} oldsymbol{X}_0 \ o \ oldsymbol{B} oldsymbol{X}_0 \ o \ oldsymbol{B} oldsymbol{X}_0 oldsymbol{C}^{\mathrm{T}} \ o \ {\sf take}$$
 skew-diagonal sums

Blind deconvolution theoretical results

We observe

$$egin{aligned} oldsymbol{y} &= oldsymbol{s} st oldsymbol{h}, &oldsymbol{h} = oldsymbol{B}oldsymbol{u}, &oldsymbol{s} = oldsymbol{C}oldsymbol{v} = oldsymbol{A}(oldsymbol{u}oldsymbol{v}^{ ext{T}}), &oldsymbol{u} \in \mathbb{R}^{K}, &oldsymbol{v} \in \mathbb{R}^{N}, \end{aligned}$$

and then solve

$$\min_{\boldsymbol{X}} \ \|\boldsymbol{X}\|_* \ \ \text{subject to} \ \ \mathcal{A}(\boldsymbol{X}) = \boldsymbol{y}.$$

Ahmed, Recht, R, '13: If B is "incoherent" in the Fourier domain, and C is randomly chosen, then we will recover $X_0 = sh^{T}$ exactly (with high probability) when

$$L \geq \text{Const} \cdot (K+N) \cdot \log^3(KN)$$

Multipath protection

white = 100% success, black = 0% success

In the cases above, we can take

 $(N+K)~\lesssim~L/3$

Unknown image with known support in the wavelet domain, Unknown blurring kernel with known support in spatial domain

observed

recovered

Oracle recovery

Adaptive recovery

observed

recovered image

recovered kernel

Passive estimation of multiple channels

Passive imaging of the ocean

Recovery results

Source / output length: 1000 Number of channels: 100 Channel impulse response length: 50

Original:

Recovered:

Realistic (simulated) ocean channels

Realistic (simulated) ocean channels

Build a subspace model using bandwidth and approximate arrival times (about 20 dimensions per channel)

Simulated recovery

 ~ 100 channels total, ~ 2000 samples per channel, Normalized error $\sim 10^{-4}$ (no noise), robust with noise

Multiple sources

- Memoryless: structured matrix factorization (SMF) problem ICA, NNMF, dictionary learning, etc.
- Use matrix recovery to make convolutional channels "memoryless": recover rank M matrix, run SMF on column space

Low-rank recovery + ICA on broadband voice

4 sources 30 channels (microphones) 2000 time samples 10 taps per channel "Blind super-resolution" in coded imaging

Imaging architecture

- Small number of sensors with gaps between them
- Blurring introduced to "fill in" these gaps
- Uncalibrated: blur kernel is unknown

Masked imaging linear algebra

- Operator coefficients a, image x unknown
- Observations: $\mathcal{A}(\boldsymbol{a}\boldsymbol{x}^{\mathrm{T}})$
- Alternative interpretation: *structured matrix factorization*

$$\boldsymbol{Y} = (\boldsymbol{G}\boldsymbol{H})\operatorname{diag}(\boldsymbol{X})\boldsymbol{\Phi}^{\mathrm{T}}$$

Masked imaging: theoretical results

L pixels, N sensors, K codes

Theorem (Bahimani, R '14):

We can jointly recover the blur H and the image X for a number of codes:

$$K \gtrsim \mu^2 \frac{L}{N} \cdot \log^3(L) \log \log N$$

 $\mu^2 \geq 1$ measures how spread out blur is in frequency

(Related work by Tang and Recht '14)

Masked imaging: numerical results

- No structural model for the image
- Blur model: build basis from psfs over a range of focal lengths (EPFL PSF Generator, Born and Wolf model)

Masked imaging: numerical results

Recovery results: 16k pixels, 64 sensors, 200 codes

originals

recovery

Notes on computation and extentions

Computational concerns

Calculating

$$\min_{oldsymbol{X} \in \mathbb{R}^{K imes N}} \|oldsymbol{X}\|_*$$
 subject to $\mathcal{A}(oldsymbol{X}) = oldsymbol{y}$

is expensive — it's an optimization program in KN variables.

The solution is low rank, so we would like to keep iterates low-rank as well.

Replace with

$$\min_{\boldsymbol{L},\boldsymbol{R}} \|\boldsymbol{L}\|_F^2 + \|\boldsymbol{R}\|_F^2$$
 subject to $\mathcal{A}(\boldsymbol{L}\boldsymbol{R}^{\mathrm{T}}) = \boldsymbol{y}$

with $\boldsymbol{R}: K \times R'$ and $\boldsymbol{L}: N \times R'$.

$$\min_{oldsymbol{L},oldsymbol{R}} \|oldsymbol{L}\|_F^2 + \|oldsymbol{R}\|_F^2 \;\;$$
 subject to $\;\;\mathcal{A}(oldsymbol{L}oldsymbol{R}^{\mathrm{T}}) = oldsymbol{y}$

with $\boldsymbol{R}: K \times R'$ and $\boldsymbol{L}: N \times R'$.

- Requires $\sim R'(K+N)$ storage, as opposed to $\sim KN$
- Nonconvex
- Same solution as nuclear norm when $R' \geq \operatorname{rank}(\boldsymbol{X}_0)$
- For small enough rank, local minima correspond to global minima (need many measurements for convergence guarantees, though)

Given rank-1 measurements of a rank-1 matrix,

$$y_m = \langle \boldsymbol{w}_0 \boldsymbol{z}_0^{\mathrm{T}}, \boldsymbol{\nu}_m \boldsymbol{\phi}_m^{\mathrm{T}} \rangle$$

it is natural to solve

 $\min_{\boldsymbol{w},\boldsymbol{z}} \|\boldsymbol{w}\|_2^2 + \|\boldsymbol{z}\|_2^2 \quad \text{subject to} \quad \langle \boldsymbol{w}, \boldsymbol{\nu}_m \rangle \langle \boldsymbol{z}, \boldsymbol{\phi}_m \rangle = y_m, \quad m = 1, \dots, M$
Convexification for rank 1

Given rank-1 measurements of a rank-1 matrix,

$$y_m = \langle \boldsymbol{w}_0 \boldsymbol{z}_0^{\mathrm{T}}, \boldsymbol{
u}_m \boldsymbol{\phi}_m^{\mathrm{T}}
angle$$

it is natural to solve

 $\min_{\boldsymbol{w},\boldsymbol{z}} \|\boldsymbol{w}\|_2^2 + \|\boldsymbol{z}\|_2^2 \quad \text{subject to} \quad \langle \boldsymbol{w}, \boldsymbol{\nu}_m \rangle \langle \boldsymbol{z}, \boldsymbol{\phi}_m \rangle = y_m, \quad m = 1, \dots, M$ Dual is an SDP:

$$\min_{\boldsymbol{\lambda}} \langle \boldsymbol{\lambda}, \boldsymbol{y}
angle$$
 subject to $\begin{bmatrix} \mathbf{I} & \sum_m \lambda_m \boldsymbol{\nu}_m \boldsymbol{\phi}_m^{\mathrm{T}} \\ \sum_m \lambda_m \boldsymbol{\nu}_m \boldsymbol{\phi}_m^{\mathrm{T}} & \mathbf{I} \end{bmatrix} \succeq \boldsymbol{m} \mathbf{0}$

Convexification for rank 1

Given rank-1 measurements of a rank-1 matrix,

$$y_m = \langle \boldsymbol{w}_0 \boldsymbol{z}_0^{\mathrm{T}}, \boldsymbol{\nu}_m \boldsymbol{\phi}_m^{\mathrm{T}} \rangle$$

it is natural to solve

 $\min_{\boldsymbol{w},\boldsymbol{z}} \|\boldsymbol{w}\|_2^2 + \|\boldsymbol{z}\|_2^2 \quad \text{subject to} \quad \langle \boldsymbol{w}, \boldsymbol{\nu}_m \rangle \langle \boldsymbol{z}, \boldsymbol{\phi}_m \rangle = y_m, \quad m = 1, \dots, M$

Dual-of-the-dual is equivalent to

$$\min_{oldsymbol{X}} \|oldsymbol{X}\|_*$$
 subject to $\mathcal{A}(oldsymbol{X}) = oldsymbol{y}$

Nuclear norm minimization is the natural relaxation

Alternating minimization

A "classical" way to solve a bilinear problem: find U^{\star},V^{\star} such that

$$\mathcal{A}(\boldsymbol{U}^{\star}\boldsymbol{V}^{\star\mathrm{T}}) = \boldsymbol{y}$$

by choosing initial $oldsymbol{U}_0$, then iterating

$$\begin{split} \boldsymbol{V}_k &= \arg\min_{\boldsymbol{V}} \|\boldsymbol{y} - \mathcal{A}(\boldsymbol{U}_{k-1}\boldsymbol{V}^{\mathrm{T}})\|_2^2\\ \boldsymbol{U}_k &= \arg\min_{\boldsymbol{U}} \|\boldsymbol{y} - \mathcal{A}(\boldsymbol{U}\boldsymbol{V}_k^{\mathrm{T}})\|_2^2 \end{split}$$

Both of these are linear least-squares problems

Recently, Jain, Netrapalli, and Sanghavi have analyzed the initialization and convergence of this for many types of measurements (random projections, matrix completion, phase retrieval)

Powerful results for rank 1 recovery for phase retrieval in Candes, Li, Soltanolkotabi

What if the target X_0 is *simultaneously* sparse and low rank?

There are multiple negative results for convex relaxation; for example

$$\min_{\boldsymbol{X}} \frac{1}{2} \| \boldsymbol{y} - \mathcal{A}(\boldsymbol{X}) \|_{F}^{2} + \tau_{1} \| \boldsymbol{X} \|_{*} + \tau_{2} \| \boldsymbol{X} \|_{1}$$

where \mathcal{A} is a random projection, is not fundamentally better than using rank alone (Oymak et al. '12)

For phase retrieval, the number of measurements required for convex relation is large ($\sim N^2$). (Li et al '13)

Simultaneous structure

For alternating minimization, there seems to be more hope: Example: X_0 is $K \times N$ row S-sparse ($S \ll K$) and low rank (R < K) then iterating

$$\begin{split} \boldsymbol{U}_{k} &= \operatorname{SparseApprox}_{\boldsymbol{U}}(\boldsymbol{y}, \ \mathcal{A}'), \quad \mathcal{A}'_{k}(\boldsymbol{U}) = \mathcal{A}(\boldsymbol{U}\boldsymbol{V}_{k-1}) \\ \boldsymbol{V}_{k} &= \arg\min_{\boldsymbol{U}} \|\boldsymbol{y} - \mathcal{A}(\boldsymbol{U}_{k}\boldsymbol{V}^{\mathrm{T}})\|_{2} \end{split}$$

from a known starting point is effective when \mathcal{A} obeys "SSLR-RIP" (Lee, Wu, Bresler '13)

Random rank-1 measurements $y_m = \langle {m X}, {m
u}_m {m \phi}_m^{
m T}
angle$ obey SSLR-RIP for

$$M \gtrsim (K+N)\log^5(K+N)$$

(Ahmed, Krahmer, R '15)

References

- A. Ahmed and J. Romberg, "Compressive multiplexers for correlated signals," accepted to *IEEE Transactions on Information Theory*, September 2014.
- A. Ahmed and J. Romberg, "Compressive sampling of ensembles of correlated signals," submitted to *Applied and Computational Harmonic Analysis*, December 2014.
- A. Ahmed, B. Recht, and J. Romberg, "Blind Deconvolution using Convex Programming," *IEEE Transactions on Information Theory*, March 2014.
- S. Bahmani and J. Romberg, "Compressive deconvolution in random mask imaging," submitted to *IEEE Transactions on Computational Imaging*, December 2014.
- S. Bahmani and J. Romberg, "Blind deconvolution and super-resolution using random masks," manuscript in preparation, to be submitted to *SIAM J. Imaging Science*, December 2014.

http://users.ece.gatech.edu/~justin/Publications.html