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Recovering a matrix from limited observations

Suppose we are interested in recovering the values of a matrix X

We are given a series of different linear combinations of the entries

y = A(X)



Example: matrix completion

Suppose we do not see all the entries in a matrix ...

X1 - X133 -
- Xo2 - Xoy4

X=| - X2 X33 -
X411 - - X4
- - - Xs54

. can we “fill in the blanks"?



Low rank structure

X = L Rx N

K x N K x R



Agenda

@ Many applications of low-rank recovery in machine learning:
recommendation systems, covariance estimation, etc.

@ This talk: how this theory relates to fundamental problems in
signal processing

Topics include:
@ sampling large ensembles of correlated signals
@ blind deconvolution
@ source separation
]

super-resolution with unknown spreading function



Low rank recovery from linear measurements

@ We have an underdetermined linear operator A
A:REN L RM - M« KN, AX) = {(X,An) M,

and observe
y = A(Xy) + noise

where X has rank R

@ One recovery technique: nuclear norm relaxation

rr}}n | X ||« subjectto A(X)=1y

where || X ||« = sum of the singular values of X



Recovering low rank matrices

Given y, we solve the (convex) optimization program

minimize || X[, =) 0i(X) subjectto A(X)=y
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When A is distance preserving, this is provably effective.



When can we recover a low rank matrix?

Two main approaches for establishing effectiveness:

@ Uniform embeddings: Show A keeps rank-R matrices separated,
JA(X, — X9)||3 ~ || X1 — X2||% forall rank-R X1, X

Very powerful, hard to establish
Works for subgaussian projections, “fast JLT" projections



When can we recover a low rank matrix?

Two main approaches for establishing effectiveness:

@ Uniform embeddings: Show A keeps rank-R matrices separated,
JA(X, — X9)||3 ~ || X1 — X2||% forall rank-R X1, X

Very powerful, hard to establish
Works for subgaussian projections, “fast JLT" projections

@ Duality theory: show you can construct a dual certificate for
Ir}}n | X ||« subjectto A(X)=A(Xo)
for a particular Xg.

Result holds for a particular X, strong stability harder to establish
Works for many A with structured randomness



Duality for low rank recovery
The matrix X is a solution to

n§n||X||* subject to Y, = (X,A,), m=1,....M
when

A(Xo) =y, andthereisazst. AT(z Z 2mAm € 0] Xolls

m=1

where with X = U¢XoV 7§,
0| Xoll« ={UoV5 +W, W[ <1}




Matrix Measurements



Matrix Recovery: random measurements

Take vectorize X, stack up vectorized A, as rows of a matrix

) A X

o

Independent subgaussian entries in the A,,, embeds rank-R matrices when
M =z R(K+N)

(Recht, Fazel, Parillo, Candes, Plan, ...)



Matrix Recovery: random measurements
Y

Embedding established in a similar manner as yesterday:

A
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@ Concentration: For a fixed X,
P(IAX)IE - IX [} >0) < Cem™M
e Covering: Rank-R matrices come from an infinite union of subspaces,

standard covering bounds allow a net of size ~ ¢/{(K+N)
for same order §



Matrix Recovery: structured randomness

Krahmer, Ward'10: If M x N ® obeys RIP for S sparse, then
® =®D, D diagonal, random
obeys the concentration inequality

P (||®'2]3 ~ |el}] > 8) < C-e

If @ is an “efficient” CS matrix, we have for all X1, X5 rank-R,

JA(X )3 ~ | X1 — X2|F when M = R(K + N)log/(KN)



Matrix Recovery: structured randomness

Krahmer, Ward'10: If M x N ® obeys RIP for S sparse, then
®' = ®D, D diagonal, random
obeys the concentration inequality
P (|[@'z|3 —llzl3] >8) < C-e®
Example: Modulate each column, then convolve each with random pulse,

then add
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Matrix Recovery: structured randomness

Krahmer, Ward'10: If M x N ® obeys RIP for S sparse, then
®' = ®D, D diagonal, random
obeys the concentration inequality
P ([I1®|3 — =3 > 6) < C-e

Example: Modulate each column, then convolve each with random pulse,
then add

modulator .
E LTI filter
rate @ hq

modulator .
. LTi fiter |

X Iate ha s
modulator - / .
code py U —\ rate ¢ Y
Tato g hs :

LT filter
han,

modulator
code P
rate




Example: matrix completion

Suppose we do not see all the entries in a matrix ...

X1 - X3 -
- Xo2 — Xoy

X=| - X332 X33 -—
X411 - - X4
- - -  Xs4

.. we can fill them in from

M 2 R(K+ N)-log”’(KN)

randomly chosen samples if X is diffuse.

(Recht, Gross, Candes, Tao, Montenari, Oh, ...)



Rank 1 inner products

Measurements of the form

Ym :V;I‘nX(z)m = <X7Vm¢;[‘n>

inner products with rank 1 matrices

With v = ¢, and X = uu? itself rank 1 and symmetric, this is the
“phase retrieval” problem

Ym = ¢%uuT¢m = ‘<’U/, ¢m>|2

@ Recovery for M > N, based on weak embeddings for rank-1,
¢ random (Candes, Strohmer, Voroninski '12)

@ (/5 embeddings for rank-R for M 2 RN (Chen, Chi, Goldsmith '13)



Rank 1 inner products

Measurements of the form

Ym = V;{'LXQbm = <X7Vm¢%>

inner products with rank 1 matrices

With v, ¢ different and X = rc! rank 1, this is equialent to “blind
deconvolution”

Ym = V%TCTd)m = <T7 Vm> : <Ca ¢m>

@ ¢,, random, v incoherent in Fourier domain,
Recovery for rank-1 X for M > (N + K)log*(NK)
(Ahmed, R, Recht '12)
Recovery for rank-R X for M > R(N + K)log®(NK)
(Ahmed, R '13)
® v, ¢, both random,
strong embedding (RIP) for M > R(N + K)log(NK)
(Ahmed Krahmer R '15)



Randomized linear algebra

Given an IV x K matrix X with rank R, we can recover the column space
from

X¢17 X¢27"'7 X¢p

for p ~ R, where the ¢, are random vectors

Y, X

Factor Y1 = Q.R. to get an orthobasis for the column space



Randomized linear algebra

Given an K x N matrix X with rank R, multiplying by a ¢ x N random
projection U preserves the row space for ¢ ~ R

i
Wi

Yg (I’Z

i

il




Randomized linear algebra

With orthobases for the column space (). and the row space (), identified,
we can recover mX from the two sets of measurements using a
least-squares algorithm

min [V - Q.AQ; @17 + Y2 — $:Q.4Q |7




Randomized Linear algebra and Rank 1

@ Measurements Y = X®P1,Y, = <I>EX can be written as

Ym = <Xaei¢g>7 or <X7 ¢ke;l;>

where ¢, is random and e; are standard basis vectors.

@ Recovery us least-squares for
M > R(K+ N)
measurements

@ Stability with noise added?



Sampling ensembles of correlated signals



Sensor arrays

AccV  Spot Magn Det WD 500 pm
200kV 30 69x SE 6.6 Caltech
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Neural probes
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Up to 100s of channels sampled at ~ 100 kHz
10s of millions of samples/second

Near Future: 1 million channels, terabits per second



Array processing of narrowband signals
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Correlated signals

Nyquist acquisition:

sampling rate &~ (number of signals) x (bandwith)



Correlated signals
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Can we exploit the /atent correlation structure to reduce the sampling rate?




One non-uniform ADC per channel

nus-ADC
VWW o { |

i>_> nus-ADC [
avg rate 6 [ I ] lT

nus- 1
Bron N\ i
nus-ADC
o/ NANA L)

@ M individual nonuniform-ADCs with average rate 0

@ Same as choosing M6 random samples from M x W matrix



One non-uniform ADC per channel

nus-ADC
%wm e

> nus-ADC [
avg rate 6 [ I ] lT

nus- |
o S\

nus-ADC
WA - S|

@ Direct application of matrix completion results:
we can recover “incoherent” ensembles when

sampling rate =60 2 %W log?(W)

@ Incoherent =
signal energy is spread out evenly across time and channels



Analog to digital converters

Uniform Non-uniform
z(t) {z(kT)}r () {z(te) }r

Data
Converter
ADS5485

i3 Texas : -~
INSTRUMENTS L b

225 Msps, 2 GHz bandwidth

Many architectures for compressive sampling of spectrally sparse signals
based on non-uniform sampling

Bresler, Feng, Candes, R, Tao, ...



Sampling using the random demodulator

code d;
rate W ¢ .Q
rate
"‘ lovI‘ngass
.“ lovIs;’Igass
code ds X
X rate W % rate ‘Q‘
: ° rate .Q
fwwwm\w —» )
code dps
rate W

@ Instead of running each ADC at rate 2 > W, we can take

Q > %W-log‘ﬂ(n')

~

subject to (weaker) incoherence conditions



Correlated sampling: numerical results

Fixed # signals M = 100 Fixed rank R = 10, bw W = 500
14 ‘ ‘ ‘ 700 ‘ ‘ ‘ ‘ ‘ ‘
12+ .
600
10+
= ~
& < 500
E -
0 400
4 =
S E 300
2+ 200
0 - 1 7 2 100 I ; ; ; L e
0 5 0 5 0 o 50 100 150 200 250 300 350

Rank R M: Number of ADCs



Random d

emodulation

o EB- G (-

input signal

(fast) th
[H=1-
[T

”III sum and sample (slow)

at fixed locations
+1

11 H\‘ N

(Architectﬁre of Yoo and AEmami)

@ Architectures for (compressive) sampling of spectrally sparse signals
Tropp, Duarte, Laska, R, Baraniuk '08

Mishali, Eldar 09

@ Hardware implementations with 10s of channels at 5 GHz



Multiplexing onto one channel

@ We can always combine M channels into 1 by multiplexing in either
time or frequency

Frequency multiplexer:

modulator e ADC
cos(Wt) rate 3W
modulator
cos(2Wt

@ Replace M ADCs running at rate W with 1 ADC at rate MW




Coded multiplexing

modulator
— code p;
rate ¢
N~
a8 .. B
modulator
—* code py
rate ¢
—
modulator
— " code p3
rate ¢ .

) modulator
— code pys
rate [

Architecture that achieves

sampling rate ~ (independent signals) x (bandwidth)
> RW -log®/? W



Coded multiplexing: numerical results

M = 20a, W = 100«

M =100, W = 1024
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red=Nyquist, blue=cmux



Blind deconvolution and source separation



Quadratic and bilinear equations

Second-order equations contain unknown terms multiplied by one another
U% + 3vivg — 6vvs + v% =7

u1v1 + duvg + Tugvy = —12 both u, v unknown

ugv1 — Quove + 4uzvg = 2

Their nonlinearity makes them trickier to solve, and the computational
framework is nowhere nearly as strong as for linear equations



Quadratic and bilinear equations

Simple (but only recently appreciated) observation:
Systems of bilinear equations, e. g.

U1V + duve + Tugvy = —12

u3v1 — Quaovg + 4dusvy = 2

can be recast as linear system of equations on a matrix that has rank 1.

UKVl UKV2 UKV3 -+ UKUN



Quadratic and bilinear equations

Simple (but only recently appreciated) observation:
Systems of bilinear equations, e. g.

ULV + duive + Tugvg = —12

can be recast as linear system of equations on a matrix that has rank 1:

(wvD) @y wivs o woy |
ugv1  (Ugz) (U2U3) v UUN

wl = |(U3v1) (u3v2) u3zv3 - UUN

UKV UKV UgV3 --- UKUN

Compressive (low rank) recovery =
“Generic” quadratic/bilinear systems with ¢N equations and N unknowns
can be solved using nuclear norm minimization



Blind deconvolution

image deblurring multipath in wireless comm

Reflected Signals

(image from EngineeringsALL)

We observe

yll] => " s[n] hlt —n]

and want to “untangle” s and h.

(Recent identifiability results by Choudhary, Mitra)



Phase retrieval

diffraction patterns

source
"Kample phase plate

(image courtesy of M. Soltanolkotabi)

Observe the magnitude of the Fourier transform |&(w)|?

Z(w) is complex, and its phase carries important information

(Recently analyzed by Candes, Li, Soltanolkotabi, Strohmer, and Voroninski)



Blind deconvolution as low rank recovery

Each sample of y = s x h is a bilinear combination of the unknowns,

and is a linear combinati

yll = sin]hlt —n]

n

on of shT:

[ s[—2]n[0] s[-2]h[1] s[=

[=2]A[1]
s[—1]h[0] s s[=
s s]0
M
]

[
S s[2]h[1]  s[2]h[2
s[3Jh0]  s[3]A[1]  s[3]h[2
[4]r[0]  s[4]n[1]  s[4]h[2
s[Blh0]  s[B]A[1]  s[5]h[2
(6110 ] sleln
[0 ]

[0

wn

]
]
]
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]
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6Jh0]  s[6]A[L]  s[6]h[2

\

\

s[7)Rh[0]  s[T]A[1 s
s[8]h[0] s[8]h[2]
o5 s[9)R[1]  s[9]h[2] |



Blind deconvolution as low rank recovery

Given y = s x h, it is impossible to untangle s and h unless we make
some structural assumptions

Structure: s and h live in known subspaces of RY; we can write
s = Bu, h=Cv, B:LxK, C:LxN

where B and C are matrices whose columns form bases for these spaces

We can now write blind deconvolution as a linear inverse problem with a
rank contraint:

y = A(Xo), where Xo=uv' hasrank=1

The action of A(-) can be broken down into three linear steps:

Xo > BXy — BXOCT — take skew-diagonal sums



Blind deconvolution theoretical results

We observe

y=sxh, h=Bu, s=Cv
= A(uv"), ueRE veRVY,

and then solve

n}}n | X ||« subjectto A(X)=uy.

Ahmed, Recht, R, "13:
If B is “incoherent” in the Fourier domain, and C' is randomly chosen,
then we will recover X = sh™ exactly (with high probability) when

L > Const: (K + N)-log’(KN)



Multipath protection

H

p

convolution with

unknown channel

e )

discovers unknown
channel and message



Numerical results

white = 100% success, black = 0% success

L =40.0k

0 5.00k 10.0k 15.0k 20.0k
K

h sparse, s randomly coded

In the cases above, we can take
(N +K)

S L/3

L=40.0k

0

X

h short, s randomly coded

0.8

0.6

0.4

0.2

50k 100k 150k 200



Numerical results

Unknown image with known support in the wavelet domain,
Unknown blurring kernel with known support in spatial domain

observed recovered



Numerical results

Oracle recovery

observed recovered image recovered kernel



Numerical results

Adaptive recovery

observed recovered image recovered kernel



Passive estimation of multiple channels

1y2<t ) = s(t) * ha(t)
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Passive imaging of the ocean
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y results

Recover

put length: 1000
Number of channels: 100

/ out
Channel impulse response

Source

length: 50




Realistic (simulated) ocean channels

»
. . P Sensor Arrays
Noise / »
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Realistic (simulated) ocean channels

Channel 1 and representation

—D?M . . L
150 200 250
Channel 2 and mmesentahun
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Build a subspace model using bandwidth and approximate arrival times
(about 20 dimensions per channel)



Simulated recovery

.
)
Bola
=
Lol

50 100 150 200 250

02
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) . " . L L
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3 and recovery
02 3|
0 Yipp ]
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Channel 4 and recovery
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Channel 5 and recovery
o. Iy B
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~ 100 channels total, ~ 2000 samples per channel,
Normalized error ~ 10=% (no noise), robust with noise



Multiple sources

Y1 (t) = Sl(t) * }Lll(t) + Sg(t) * hlg(t) +.---+ S]w(t) * }Luw(t)

S1 (t) ] - s
Yo(t) = s1(t) % ha1 (t) + sa(t) * hog(t) + - -+ 4+ spr(t) * hapr (F)
S9 (t) - — »

. H .

yr(t) = s1(t) * hxe1 (t) + s2(t) * hyea(t) + - + spr(t) * hyepr ()
SM(t)—> N

@ Memoryless: structured matrix factorization (SMF) problem
ICA, NNMF, dictionary learning, etc.

@ Use matrix recovery to make convolutional channels " memoryless”:
recover rank M matrix, run SMF on column space



Low-rank recovery + ICA on broadband voice

Input Signal z1

2500 3000 3500 4000 4500 5000
Input Signal 22

500 1000 1500 2000

2500 3000 3500 4000 4500 5000
Input Signal 23

500 1000 1500 2000

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Input Signal z4

AL
(AR

1500 2000 2500 3000 3500 4000 4500 5000

4 sources

30 channels (microphones)

2000 time samples
10 taps per channel

Recovered and Seperated Signal zEst1

Loy

NP

4000 4500 5000

500 1000

1500 2000 2500 3000 3500
Recovered and Seperated Signal zEst2

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Recovered and Seperated Signal zEst3

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Recovered and Seperated Signal zEstd.

500 1000 1500 2000 2500 3000 3500 4000 4500 5000



“Blind super-resolution” in coded imaging



Imaging architecture

Blurred Sensors Blurring lens DMD Image
&
subsampled
image

Y = G H D, x

@ Small number of sensors with gaps between them
@ Blurring introduced to “fill in" these gaps
@ Uncalibrated: blur kernel is unknown
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Masked imaging linear algebra

known

unknown

linear constraints

GH = Z ali] B; unknown image,

i unconstrained

@ Operator coefficients a, image & unknown
e Observations: A(ax™)

@ Alternative interpretation: structured matrix factorization

Y = (GH) diag(X)®"



Masked imaging: theoretical results

known

unknown

linear constraints

GH = Z ali] B; unknown image,

i unconstrained

L pixels, N sensors, K codes

Theorem (Bahimani, R '14):
We can jointly recover the blur H and the image X for a number of codes:

L
K > =~

12 > 1 measures how spread out blur is in frequency

-log®(L) loglog N

(Related work by Tang and Recht '14)



Masked imaging: numerical results

original blur blurred image  blurred, subsampled

@ No structural model for the image

@ Blur model: build basis from psfs over a range of focal lengths
(EPFL PSF Generator, Born and Wolf model)



Masked imaging: numerical results

Recovery results: 16k pixels, 64 sensors, 200 codes

originals recovery



Notes on computation and extentions



Computational concerns

Calculating

o luin | X« subjectto A(X)=1y

is expensive — it's an optimization program in KN variables.

The solution is low rank, so we would like to keep iterates low-rank as well.
Replace with
min | L% + [|R|7 subject to A(LR") =y

with R: K x R'and L: N x R'.



Nonconvex heuristic

min | L% + [|R7 subject to A(LR') =y
with R: K x R and L: N x R..

Requires ~ R'(K + N) storage, as opposed to ~ KN

°
@ Nonconvex
@ Same solution as nuclear norm when R’ > rank(X))
°

For small enough rank, local minima correspond to global minima
(need many measurements for convergence guarantees, though)



Convexification for rank 1

Given rank-1 measurements of a rank-1 matrix,

Ym = <szg7 Vm¢£>

it is natural to solve

min |wl + =3 subject to (. v} (2. B) = Y, m=1,...



Convexification for rank 1

Given rank-1 measurements of a rank-1 matrix,

Ym = <wOZ0Tp Vm¢’7Tn>

it is natural to solve

min HwH% + HzH% subject to  (w,vn){(z,0,,) =Ym, m=1,..., M
w,z
Dual is an SDP:
. . I E : )\me(:bT
m m >_
m}}n()\, y) subject to S Amvmdl I =m0



Convexification for rank 1

Given rank-1 measurements of a rank-1 matrix,

Ym = (Wozg , Vimyy,)

it is natural to solve

min [+ 2[5 sublect to (w0, (2, Bp) = s =L

Dual-of-the-dual is equivalent to

n%i(n | X[« subjectto A(X)=1y

Nuclear norm minimization is the natural relaxation



Alternating minimization
A ‘“classical” way to solve a bilinear problem: find U*, V* such that
AUV =y
by choosing initial Uy, then iterating
Vi = argm‘;n ly — AU VD)3

Uy, = argminly — AUV}

Both of these are linear least-squares problems

Recently, Jain, Netrapalli, and Sanghavi have analyzed the initialization
and convergence of this for many types of measurements (random
projections, matrix completion, phase retrieval)

Powerful results for rank 1 recovery for phase retrieval in Candes, Li,
Soltanolkotabi



Simultaneous structure

What if the target X is simultaneously sparse and low rank?

There are multiple negative results for convex relaxation; for example
1 2
min o |ly — AX)|5 + 7l Xl + 721 X1

where A is a random projection, is not fundamentally better than using
rank alone (Oymak et al. '12)

For phase retrieval, the number of measurements required for convex
relation is large (~ N?2). (Li et al '13)



Simultaneous structure

For alternating minimization, there seems to be more hope:

Example: X is K x N row S-sparse (S < K) and low rank (R < K)
then iterating

Uy, = SparseApproxg (y, ), AL(U) = AUV,_,)
Vi = arg m(}n lly — A(UkVT)”Q

from a known starting point is effective when A obeys “SSLR-RIP”
(Lee, Wu, Bresler '13)

Random rank-1 measurements 4, = (X, v,,¢.) obey SSLR-RIP for
M > (K + N)log’(K + N)

(Ahmed, Krahmer, R '15)
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