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Recovering a matrix from limited observations

Suppose we are interested in recovering the values of a matrix X

X =




X1,1 X1,2 X1,3 X1,4 X1,5

X2,1 X2,2 X2,3 X2,4 X2,5

X3,1 X3,2 X3,3 X3,4 X3,5

X4,1 X4,2 X4,3 X4,4 X4,5

X5,1 X5,2 X5,3 X5,4 X5,5




We are given a series of different linear combinations of the entries

y = A(X)



Example: matrix completion

Suppose we do not see all the entries in a matrix ...

X =




X1,1 − X1,3 − X1,5

− X2,2 − X2,4 −
− X3,2 X3,3 − −
X4,1 − − X4,4 X4,5

− − − X5,4 X5,5




... can we “fill in the blanks”?



Low rank structure
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Agenda

Many applications of low-rank recovery in machine learning:
recommendation systems, covariance estimation, etc.

This talk: how this theory relates to fundamental problems in
signal processing

Topics include:

sampling large ensembles of correlated signals

blind deconvolution

source separation

super-resolution with unknown spreading function



Low rank recovery from linear measurements

We have an underdetermined linear operator A

A : RK×N → RM , M � KN, A(X) = {〈X,Am〉}Mm=1

and observe
y = A(X0) + noise

where X0 has rank R

One recovery technique: nuclear norm relaxation

min
X
‖X‖∗ subject to A(X) = y

where ‖X‖∗ = sum of the singular values of X



Recovering low rank matrices

Given y, we solve the (convex) optimization program

minimize ‖X‖∗ =
∑

i

σi(X) subject to A(X) = y

• 2x2 matrices
• plotted in 3d

  rank 1
  x2 + z2 + 2y2 = 1

Convex hull:

Rank

kXk⇤ =
X

i

�i(X)

When A is distance preserving, this is provably effective.



When can we recover a low rank matrix?

Two main approaches for establishing effectiveness:

Uniform embeddings: Show A keeps rank-R matrices separated,

‖A(X1 −X2)‖22 ≈ ‖X1 −X2‖2F for all rank-R X1,X2

Very powerful, hard to establish
Works for subgaussian projections, “fast JLT” projections

Duality theory: show you can construct a dual certificate for

min
X
‖X‖∗ subject to A(X) = A(X0)

for a particular X0.
Result holds for a particular X0, strong stability harder to establish
Works for many A with structured randomness
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Duality for low rank recovery

The matrix X0 is a solution to

min
X
‖X‖∗ subject to ym = 〈X,Am〉, m = 1, . . . ,M

when

A(X0) = y, and there is a z s.t. AT(z) =

M∑

m=1

zmAm ∈ ∂‖X0‖∗

where with X0 = U0Σ0V
T
0 ,

∂‖X0‖∗ = {U0V
T
0 +W , ‖W ‖ ≤ 1}

Range(AT)

@kX0k⇤
{X : AX = y}



Matrix Measurements



Matrix Recovery: random measurements

Take vectorize X, stack up vectorized Am as rows of a matrix

A X

Independent subgaussian entries in the Am embeds rank-R matrices when

M & R(K +N)

(Recht, Fazel, Parillo, Candes, Plan, ...)



Matrix Recovery: random measurements

A X

Embedding established in a similar manner as yesterday:

Concentration: For a fixed X,

P
(∣∣‖A(X)‖22 − ‖X‖2F

∣∣ > δ
)
≤ C · e−cδ2M

Covering: Rank-R matrices come from an infinite union of subspaces,
standard covering bounds allow a net of size ∼ eR(K+N)

for same order δ



Matrix Recovery: structured randomness

Krahmer, Ward’10: If M ×N Φ obeys RIP for S sparse, then

Φ′ = ΦD, D diagonal, random

obeys the concentration inequality

P
(∣∣‖Φ′x‖22 − ‖x‖22

∣∣ > δ
)
< C · e−cS

If Φ is an “efficient” CS matrix, we have for all X1,X2 rank-R,

‖A(X1)‖22 ≈ ‖X1 −X2‖2F when M & R(K +N) logq(KN)



Matrix Recovery: structured randomness

Krahmer, Ward’10: If M ×N Φ obeys RIP for S sparse, then

Φ′ = ΦD, D diagonal, random

obeys the concentration inequality

P
(∣∣‖Φ′x‖22 − ‖x‖22

∣∣ > δ
)
< C · e−cS

Example: Modulate each column, then convolve each with random pulse,
then add

G1 G2 · · · Gp

...

= x1

x2

xK

y



Matrix Recovery: structured randomness

Krahmer, Ward’10: If M ×N Φ obeys RIP for S sparse, then

Φ′ = ΦD, D diagonal, random

obeys the concentration inequality

P
(∣∣‖Φ′x‖22 − ‖x‖22

∣∣ > δ
)
< C · e−cS

Example: Modulate each column, then convolve each with random pulse,
then add

...

LTI filter

LTI filter

LTI filter

LTI filter

...

h1

h2

h3

hm

modulator

modulator

modulator

modulator

+...

ADC

code p1
rate ϕ

code p2

code p3

code pm

rate ϕ

rate ϕ

rate ϕ

rate ϕ y
X



Example: matrix completion

Suppose we do not see all the entries in a matrix ...

X =




X1,1 − X1,3 − X1,5

− X2,2 − X2,4 −
− X3,2 X3,3 − −
X4,1 − − X4,4 X4,5

− − − X5,4 X5,5




... we can fill them in from

M & R(K +N) · log2(KN)

randomly chosen samples if X is diffuse.

(Recht, Gross, Candes, Tao, Montenari, Oh, ...)



Rank 1 inner products

Measurements of the form

ym = νTmXφm = 〈X,νmφ
T
m〉

inner products with rank 1 matrices

With ν = φk, and X = uuT itself rank 1 and symmetric, this is the
“phase retrieval” problem

ym = φT
muu

Tφm = |〈u,φm〉|2

Recovery for M & N , based on weak embeddings for rank-1,
φ random (Candes, Strohmer, Voroninski ’12)

`1/`2 embeddings for rank-R for M & RN (Chen, Chi, Goldsmith ’13)



Rank 1 inner products

Measurements of the form

ym = νTmXφm = 〈X,νmφ
T
m〉

inner products with rank 1 matrices

With ν,φ different and X = rcT rank 1, this is equialent to “blind
deconvolution”

ym = νTmrc
Tφm = 〈r,νm〉 · 〈c,φm〉

φm random, ν incoherent in Fourier domain,
Recovery for rank-1 X for M & (N +K) log3(NK)

(Ahmed, R, Recht ’12)

Recovery for rank-R X for M & R(N +K) log3(NK)
(Ahmed, R ’13)

νm,φm both random,
strong embedding (RIP) for M & R(N +K) log(NK)

(Ahmed, Krahmer, R ’15)



Randomized linear algebra

Given an N ×K matrix X with rank R, we can recover the column space
from

Xφ1, Xφ2, . . . , Xφp

for p ≈ R, where the φi are random vectors

X

=

�1Y1

Factor Y 1 = QcRc to get an orthobasis for the column space



Randomized linear algebra

Given an K ×N matrix X with rank R, multiplying by a q ×N random
projection UT preserves the row space for q ≈ R

X

=

Y2 �2



Randomized linear algebra

With orthobases for the column space Qc and the row space Qr identified,
we can recover mX from the two sets of measurements using a
least-squares algorithm

min
A
‖Y 1 −QcAQ

T
r Φ1‖2F + ‖Y 2 −Φ2QcAQ

T
r ‖2F

X

=

Qc

QT
r

A



Randomized Linear algebra and Rank 1

Measurements Y 1 = XΦ1,Y 2 = ΦT
2X can be written as

ym = 〈X, eiφ
T
k 〉, or 〈X,φke

T
i′ 〉

where φk is random and ei are standard basis vectors.

Recovery us least-squares for

M & R(K +N)

measurements

Stability with noise added?



Sampling ensembles of correlated signals



Sensor arrays

Caltech multielectrode IBM phased array

MIT nanophotonic array UCSD phased



Neural probes
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recording site

Up to 100s of channels sampled at ∼ 100 kHz

10s of millions of samples/second

Near Future: 1 million channels, terabits per second



Array processing of narrowband signals

✓1

100 MHz bandwidth, carried at 5 GHz, linear array with 100 elements

singular values, log10 scale
1 2 3 4 5 6

-5

-4

-3

-2

-1

0

singular values, log10 scale
1 2 3 4 5 6

-5

-4

-3

-2

-1

0

one source two sources



Correlated signals

M

Nyquist acquisition:

sampling rate ≈ (number of signals)× (bandwith)

= M ·W



Correlated signals




−0.82 −1.31
1.09 0.27
1.05 1.81
−0.74 −0.31
−0.97 0.94
1.19 2.19




=

M

R

Can we exploit the latent correlation structure to reduce the sampling rate?



One non-uniform ADC per channel

nus-ADC

nus-ADC

nus-ADC

nus-ADC

avg rate θ

avg rate θ

avg rate θ

avg rate θ

M individual nonuniform-ADCs with average rate θ

Same as choosing Mθ random samples from M ×W matrix



One non-uniform ADC per channel

nus-ADC

nus-ADC

nus-ADC

nus-ADC

avg rate θ

avg rate θ

avg rate θ

avg rate θ

Direct application of matrix completion results:
we can recover “incoherent” ensembles when

sampling rate = θ &
R

M
W · log2(W )

Incoherent ⇒
signal energy is spread out evenly across time and channels



Analog to digital converters

Uniform Non-uniform

ADC
rate '

x(t) {x(kT )}k
nus-ADC

avg rate '
x(t) {x(tk)}k

6

Fig. 6: NUS IC sampling timing and waveforms. Left panel: Interface timing between NUS die and ADC. Right panel: Simulated waveforms
before and after being sampled by NIN. Horizontal scale is in ns.

Fig. 7: NUS IC die photo. Die size is 4.0 ⇥ 2.6 mm.

Fig. 8: NUS test fixture. The NUS IC is mounted on a custom pallet.
Also shown is the 14-bit ADC as well as various test equipment
connector interfaces.

narrow as possible (high sensitivity). We found experimentally
that the square of a Kaiser-Bessel derived (KBD) window
used in audio coding produces excellent results. Furthermore,
this choice leads to a rectangular synthesis window (i.e.,
w2(i) ⌘ 1) [26], which is not only convenient but ensures
that our reconstruction errors are weighted equally in time. We
use N = 65536 and KBD parameter ⇡↵ = 8, for which the
amplitude of the analysis window (in the frequency domain)
falls below our system noise floor within 6 bins. This means
that a windowed sinusoid will deliver non-trivial signal energy
to no more than 11 DFT bins (of 32768 total bins). It is
possible to improve upon this result by designing a window
using convex optimization methods, but the KBD window is
sufficient for our purposes.

While the PRFB-inspired architecture has proven useful for
verifying the fidelity of our system design, our actual imple-
mentation differs in important practical respects. In particular,
we choose NUS sampling patterns such that each half-window
contains an identical number of NUS samples. This allows us
to eliminate the zero-padding step altogether: the NUS samples
can be partitioned into overlapping windows of M points
each, and these windows can by multiplied by appropriately
sampled versions of the analysis window function. The result
is a more practical arrangement of processing steps depicted
in Figure 11. The key difference from our earlier description
is that the sparse recovery engine no longer receives the zero-
padded and windowed N -point signal y

j
; instead its input is

yj , a windowed (but not zero-padded) M -point NUS signal.

With this architecture in place, we can treat each window
separately if we choose—although we can (and do) take
advantage of the spectral similarity between adjacent windows
to improve performance. From this point forward, therefore,
we shall focus solely on the generation of estimates bxj 2 RN

of signals xj 2 RN , given non-uniform sample sets yj 2 RM

and exact knowledge of the sampling pattern. When it is clear
from context that we are dealing with a single window, we
will drop the j subscript altogether.

Statement "A" (Approved for Public Release, Distribution Unlimited) [DISTAR case #18837]

225 Msps, 2 GHz bandwidth

Many architectures for compressive sampling of spectrally sparse signals
based on non-uniform sampling

Bresler, Feng, Candes, R, Tao, ...



Sampling using the random demodulator

code d1

code d2

code dM

X …
 …
 

rateW

rateW

rateW …
 

LTI
low pass

LTI

LTI

low pass

low pass

ADC

ADC

ADC

rateΩ 

rateΩ 

rateΩ 

Instead of running each ADC at rate Ω ≥W , we can take

Ω &
R

M
W · log3(W )

subject to (weaker) incoherence conditions



Correlated sampling: numerical results

Fixed # signals M = 100 Fixed rank R = 10, bw W = 500
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Random demodulation

modulatorx(t)
code p

LTI
low pass

ADC
rate ϕ y[k]
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input signal x(t) input signal X(ω)

pseudorandom
sequence p

c
(t)

pseudorandom sequence
spectrum P

c
(ω)

modulated input
modulated input and

integrator (low−pass filter)

� tk

tk−1

678$

(Architecture of Yoo and Emami)

Architectures for (compressive) sampling of spectrally sparse signals
Tropp, Duarte, Laska, R, Baraniuk ’08

Mishali, Eldar ’09

Hardware implementations with 10s of channels at 5 GHz



Multiplexing onto one channel

We can always combine M channels into 1 by multiplexing in either
time or frequency

Frequency multiplexer:

modulator
cos(Wt)

modulator
cos(2Wt)

+ ADC
rate 3W

Replace M ADCs running at rate W with 1 ADC at rate MW



Coded multiplexing

modulator

modulator

modulator

modulator

+

...

ADC

code p1
rate ϕ

code p2

code p3

rate ϕ

rate ϕ

rate ϕ

rate ϕ

...
code pM

y

Architecture that achieves

sampling rate ≈ (independent signals)× (bandwidth)

& RW · log3/2W



Coded multiplexing: numerical results

M = 20α, W = 100α
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Blind deconvolution and source separation



Quadratic and bilinear equations

Second-order equations contain unknown terms multiplied by one another

v21 + 3v1v2 − 6v1v3 + v22 = 7 both u, v unknown

u1v1 + 5u1v2 + 7u2v3 = −12 both u, v unknown

u3v1 − 9u2v2 + 4u3v2 = 2 both u, v unknown

Their nonlinearity makes them trickier to solve, and the computational
framework is nowhere nearly as strong as for linear equations



Quadratic and bilinear equations

Simple (but only recently appreciated) observation:
Systems of bilinear equations, e. g.

u1v1 + 5u1v2 + 7u2v3 = −12

u3v1 − 9u2v2 + 4u3v2 = 2

can be recast as linear system of equations on a matrix that has rank 1:

uvT =

2
666664

u1v1 u1v2 u1v3 · · · u1vN

u2v1 u2v2 u2v3 · · · u2vN

u3v1 u3v2 u3v3 · · · u3vN

...
...

. . .

uKv1 uKv2 uKv3 · · · uKvN

3
777775



Quadratic and bilinear equations

Simple (but only recently appreciated) observation:
Systems of bilinear equations, e. g.

u1v1 + 5u1v2 + 7u2v3 = −12

u3v1 − 9u2v2 + 4u3v2 = 2

can be recast as linear system of equations on a matrix that has rank 1:

uvT =

2
666664

u1v1 u1v2 u1v3 · · · u1vN

u2v1 u2v2 u2v3 · · · u2vN

u3v1 u3v2 u3v3 · · · u3vN

...
...

. . .

uKv1 uKv2 uKv3 · · · uKvN

3
777775

Compressive (low rank) recovery ⇒
“Generic” quadratic/bilinear systems with cN equations and N unknowns
can be solved using nuclear norm minimization



Blind deconvolution

image deblurring multipath in wireless comm

(image from EngineeringsALL)

We observe
y[`] =

∑

n

s[n]h[`− n]

and want to “untangle” s and h.

(Recent identifiability results by Choudhary, Mitra)



Phase retrieval

(image courtesy of M. Soltanolkotabi)

Observe the magnitude of the Fourier transform |x̂(ω)|2
x̂(ω) is complex, and its phase carries important information

(Recently analyzed by Candes, Li, Soltanolkotabi, Strohmer, and Voroninski)



Blind deconvolution as low rank recovery

Each sample of y = s ∗ h is a bilinear combination of the unknowns,

y[`] =
∑

n

s[n]h[`− n]

and is a linear combination of shT:

y1[0]

y1[1]

y1[2]

y1[9]

2
66666666666666666666666664

s[�2]h[0] s[�2]h[1] s[�2]h[2]

s[�1]h[0] s[�1]h[1] s[�1]h[2]

s[0]h[0] s[0]h[1] s[0]h[2]

s[1]h[0] s[1]h[1] s[1]h[2]

s[2]h[0] s[2]h[1] s[2]h[2]

s[3]h[0] s[3]h[1] s[3]h[2]

s[4]h[0] s[4]h[1] s[4]h[2]

s[5]h[0] s[5]h[1] s[5]h[2]

s[6]h[0] s[6]h[1] s[6]h[2]

s[7]h[0] s[7]h[1] s[7]h[2]

s[8]h[0] s[8]h[1] s[8]h[2]

s[9]h[0] s[9]h[1] s[9]h[2]

3
77777777777777777777777775



Blind deconvolution as low rank recovery

Given y = s ∗ h, it is impossible to untangle s and h unless we make
some structural assumptions

Structure: s and h live in known subspaces of RL; we can write

s = Bu, h = Cv, B : L×K, C : L×N

where B and C are matrices whose columns form bases for these spaces

We can now write blind deconvolution as a linear inverse problem with a
rank contraint:

y = A(X0), where X0 = uvT has rank=1

The action of A(·) can be broken down into three linear steps:

X0 → BX0 → BX0C
T → take skew-diagonal sums



Blind deconvolution theoretical results

We observe

y = s ∗ h, h = Bu, s = Cv

= A(uvT), u ∈ RK , v ∈ RN ,

and then solve

min
X
‖X‖∗ subject to A(X) = y.

Ahmed, Recht, R, ’13:
If B is “incoherent” in the Fourier domain, and C is randomly chosen,
then we will recover X0 = shT exactly (with high probability) when

L ≥ Const · (K +N) · log3(KN)



Multipath protection

encode decode

=
=

m

Cp

y

convolution with 
unknown channel

discovers unknown 
channel and message

m m̃p

h̃

H

y = HCm

y p



Numerical results

white = 100% success, black = 0% success

h sparse, s randomly coded h short, s randomly coded

In the cases above, we can take

(N +K) . L/3



Numerical results

Unknown image with known support in the wavelet domain,
Unknown blurring kernel with known support in spatial domain

observed recovered



Numerical results

Oracle recovery

 

 

 

 

 

 

observed recovered image recovered kernel



Numerical results

Adaptive recovery

 

 

 

 

 

 

observed recovered image recovered kernel



Passive estimation of multiple channels

h1(t)

h2(t)

hK(t)

s(t)

yK(t) = s(t) ⇤ hK(t)

y2(t) = s(t) ⇤ h2(t)

y1(t) = s(t) ⇤ h1(t)

...
...

2
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Passive imaging of the ocean



Recovery results

Source / output length: 1000
Number of channels: 100
Channel impulse response length: 50
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Realistic (simulated) ocean channelsRealistic shallow water channel model 

Noise 
source 

Sensor Arrays 

•  Noise signal is in the broad band 
400~600Hz 

•  The distance between the noise 
source and sensor arrays is 
approximate 1km 

 



Realistic (simulated) ocean channelsChannel and representation 

We build a subspace 
to represent the real 
channel only using 
the estimated time 
delay information. 
 
 

Build a subspace model using bandwidth and approximate arrival times
(about 20 dimensions per channel)



Simulated recovery
Recovery 

0 10 20 30 40 50 60 70 80 90 100
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−0.05

0

0.05

0.1

0.15

0.2

Normalized noise source  
recovery error= 0.0024 

Normalized 
channel error 
over all channels: 
0.0002 
 

∼ 100 channels total, ∼ 2000 samples per channel,
Normalized error ∼ 10−4 (no noise), robust with noise



Multiple sources

Memoryless: structured matrix factorization (SMF) problem
ICA, NNMF, dictionary learning, etc.

Use matrix recovery to make convolutional channels ”memoryless”:
recover rank M matrix, run SMF on column space



Low-rank recovery + ICA on broadband voice
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30 channels (microphones)
4 sources

2000 time samples
10 taps per channel



“Blind super-resolution” in coded imaging



Imaging architecture

Small number of sensors with gaps between them
Blurring introduced to “fill in” these gaps
Uncalibrated: blur kernel is unknown





Masked imaging linear algebra

2
4

3
5
2
66664

3
77775

2
66664

3
77775

xDkGH

GH =
X

i

a[i] Bi

unknown

linear constraints

known

unknown image,

unconstrained

yk =

Operator coefficients a, image x unknown

Observations: A(axT)

Alternative interpretation: structured matrix factorization

Y = (GH) diag(X)ΦT



Masked imaging: theoretical results

2
4

3
5
2
66664

3
77775

2
66664

3
77775

xDkGH

GH =
X

i

a[i] Bi

unknown

linear constraints

known

unknown image,

unconstrained

yk =

L pixels, N sensors, K codes

Theorem (Bahimani, R ’14):
We can jointly recover the blur H and the image X for a number of codes:

K & µ2
L

N
· log3(L) log logN

µ2 ≥ 1 measures how spread out blur is in frequency

(Related work by Tang and Recht ’14)



Masked imaging: numerical results

original blur blurred image blurred, subsampled

No structural model for the image

Blur model: build basis from psfs over a range of focal lengths
(EPFL PSF Generator, Born and Wolf model)



Masked imaging: numerical results

Recovery results: 16k pixels, 64 sensors, 200 codes

originals recovery



Notes on computation and extentions



Computational concerns

Calculating
min

X∈RK×N
‖X‖∗ subject to A(X) = y

is expensive — it’s an optimization program in KN variables.

The solution is low rank, so we would like to keep iterates low-rank as well.

Replace with

min
L,R
‖L‖2F + ‖R‖2F subject to A(LRT) = y

with R : K ×R′ and L : N ×R′.



Nonconvex heuristic

min
L,R
‖L‖2F + ‖R‖2F subject to A(LRT) = y

with R : K ×R′ and L : N ×R′.
Requires ∼ R′(K +N) storage, as opposed to ∼ KN
Nonconvex

Same solution as nuclear norm when R′ ≥ rank(X0)

For small enough rank, local minima correspond to global minima
(need many measurements for convergence guarantees, though)



Convexification for rank 1

Given rank-1 measurements of a rank-1 matrix,

ym = 〈w0z
T
0 ,νmφ

T
m〉

it is natural to solve

min
w,z
‖w‖22 + ‖z‖22 subject to 〈w,νm〉〈z,φm〉 = ym, m = 1, . . . ,M



Convexification for rank 1

Given rank-1 measurements of a rank-1 matrix,

ym = 〈w0z
T
0 ,νmφ

T
m〉

it is natural to solve

min
w,z
‖w‖22 + ‖z‖22 subject to 〈w,νm〉〈z,φm〉 = ym, m = 1, . . . ,M

Dual is an SDP:

min
λ
〈λ,y〉 subject to

[
I

∑
m λmνmφ

T
m∑

m λmνmφ
T
m I

]
�m0



Convexification for rank 1

Given rank-1 measurements of a rank-1 matrix,

ym = 〈w0z
T
0 ,νmφ

T
m〉

it is natural to solve

min
w,z
‖w‖22 + ‖z‖22 subject to 〈w,νm〉〈z,φm〉 = ym, m = 1, . . . ,M

Dual-of-the-dual is equivalent to

min
X
‖X‖∗ subject to A(X) = y

Nuclear norm minimization is the natural relaxation



Alternating minimization

A “classical” way to solve a bilinear problem: find U?,V ? such that

A(U?V ?T) = y

by choosing initial U0, then iterating

V k = arg min
V
‖y −A(Uk−1V

T)‖22
Uk = arg min

U
‖y −A(UV T

k )‖22

Both of these are linear least-squares problems

Recently, Jain, Netrapalli, and Sanghavi have analyzed the initialization
and convergence of this for many types of measurements (random
projections, matrix completion, phase retrieval)

Powerful results for rank 1 recovery for phase retrieval in Candes, Li,
Soltanolkotabi



Simultaneous structure

What if the target X0 is simultaneously sparse and low rank?

There are multiple negative results for convex relaxation; for example

min
X

1

2
‖y −A(X)‖2F + τ1‖X‖∗ + τ2‖X‖1

where A is a random projection, is not fundamentally better than using
rank alone (Oymak et al. ’12)

For phase retrieval, the number of measurements required for convex
relation is large (∼ N2). (Li et al ’13)



Simultaneous structure

For alternating minimization, there seems to be more hope:
Example: X0 is K ×N row S-sparse (S � K) and low rank (R < K)
then iterating

Uk = SparseApproxU (y, A′), A′k(U) = A(UV k−1)

V k = arg min
U
‖y −A(UkV

T)‖2

from a known starting point is effective when A obeys “SSLR-RIP”
(Lee, Wu, Bresler ’13)

Random rank-1 measurements ym = 〈X,νmφ
T
m〉 obey SSLR-RIP for

M & (K +N) log5(K +N)

(Ahmed, Krahmer, R ’15)
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